• Skip to main content
  • Skip to primary sidebar

Making Easy Circuits

Learn and build electronic circuits

You are here: Home / Lights and Lamps / How to Build a 32V, 3 Amp LED Driver Circuit

How to Build a 32V, 3 Amp LED Driver Circuit

Last Updated on February 17, 2018 by Admin 4 Comments

The post offers a 32V, 3 amp SMPS circuit which can be in particular useful for operating 100 watt LED components, rated with similar specifications.
The circuit of the offered 32 V, 3 amp smps led driver might be known with the the guide of the following points:
The mains voltage is improved and filtered by the bridge network and the relevant filter capacitor C1. This rectified 310 V DC transmits through R1, R2 and causes T1 into conduction.
T1 switches ON and draws this DC to ground by means of the 30 + 30 primary winding activating a steep pulse during this winding and also across the lower auxiliary winding.
This pulse across the auxiliary winding allows a negative pulse to be produced at the junction of R1/R2 which briefly sinks the base drive to ground such that T1 now shuts off.
At the same time C2 charges up drying up the auxiliary winding consequence, and permits T1 with a fresh initiating potential at its base.
T1 performs yet again and the cycle retains repeating at a frequency dependent upon the value of R2/R3/C2 that may be around 60 kHz right here.
This rapid switching encourages a corresponding voltage and current across the secondary winding which might be more than 32V, 3amps AC according to the presented winding information.
The above voltage is properly filtered by C4 and used across R6, R7 for providing the shunt regulator and the opto coupler phase.
R6 is correctly modified such that the output voltage settles to about 32 V.
The shunt regulator immediately triggers the opto in the event the voltage is likely to get over the set value.
The opto consequently "kills" the base drive of T1 for the moment disabling the primary procedures until the output potential is renewed to the proper value, the opto now produces T1 and permits the functions to function usually, merely until the output goes up once again to start the opto one more time, the method maintains duplicating making sure a continuing 32 V at the output, for driving the 100 watt LED module safely

32v2B32Bamp2Bsmps2Bcircuit

The transformer is wound over a normal EE ferrite core obtaining a central cross sectional area of a minimum of 7 square mm.
Talking about the figure, the upper two primary winding are created up 30 turns of 0.3 mm diameter super enameled copper wire.
The lower primary auxiliary primary winding contains 4 turns of the similar wire as above.
The secondary is wound with 22 turns of 0.6mm super enameled copper wire.
The methods are given below:
First start winding the upper 30 turns, secure its ends on the bobbin turns by soldering, and put a thick layer of insulation tape over these turns.
Next, wind the secondary 22 turns and solder its end terminals on the other side of the bobbin leads, put a layer of thick insulation tape.
Over the above layer start winding the auxiliary 4 turns and as above obtain the ends properly on the primary side leads of the bobbin, again put some layers of insulation over this,
At last, wind the second 30 primary turns beginning with the earlier 30 turn end, and acquire the end over certainly one of the leads of the bobbin on the primary side.
Cover the completed winding with further layers of insulation tapes.
You should definitely be aware of the finished leads correctly so that you will also don't produce wrong connections with the circuit and result in a potential fire danger.
Parts List
All 1 watt, CFR
R1 = 10E
R2 = 1M
R3 = 470E
R4 = 100E
All 1/4 watt MFR 5%
R5 = 470E
R6 = preset 22k
R7 = 2k2
C1 = 10uF/400V
C2 = 2.2nF/250V
C3 = 220pF/1kV
C4 = 2200uF/50V
D1---D4 = 1N4007
D5, D6 = BA159
shunt regulator = TL431
opto = 4n35
T1 = MJE13005

You'll also like:

  • 1.  Building a Moving LED Display Circuit
  • 2.  Cheap 100 Watt LED Bulb Circuit
  • 3.  Simple 40 Watt Electronic Choke Circuit
  • 4.  Blinking LED Bow Tie Circuit
  • 5.  Transformerless 220V Lamp Chaser Circuits for Festival Decorations
  • 6.  Simple LED Chaser Circuit using IC 4017 and IC 555

About Admin

Hey friends, Thanks a bunch for stopping by this site! I am an engineer with a Bachelor of Engineering in Electronics and Telecommunication. One of my passions is gathering information from all sorts of electronics books and tutorials. I then take that information and compile it into a language that is super easy to understand. My goal is to make those complex electronics circuit concepts and technical terms much more accessible for all the new and budding electronics engineers out there. I can also design customized circuit diagrams as required by the users.
If you have any questions related to this field, please do not hesitate to drop a comment! I am always here and ready to help you out with any queries you might have. I cannot wait to hear from you!

Reader Interactions

Comments

  1. Chimu says

    February 16, 2017 at 7:26 pm

    Why do I get 10V 0.5A with a load of 100W(LED)

    Reply
    • admin says

      February 16, 2017 at 9:39 pm

      without load how much voltage do you see?

      Reply
  2. Damian says

    January 23, 2017 at 3:39 am

    Has this circuit any current limiting capability?
    thanks

    Reply
    • admin says

      January 23, 2017 at 12:18 pm

      No it doesn’t, but a simple modification using the concept shown below can be integrated with the T1 of the above SMPS for ensuring the current controlled feature

      https://makingcircuits.com/blog/2015/08/100-watt-current-controlled-led-driver-circuit.html

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Categories

  • 3 Phase (4)
  • 8051 Microcontroller (1)
  • Arduino (11)
  • Audio and Amplifier (102)
  • Automation (8)
  • Battery Chargers (64)
  • Bicycle Projects (4)
  • Car and Motorcycle Projects (39)
  • Datasheets (10)
  • DIY Projects (5)
  • Electrical (15)
  • Free Energy (6)
  • Games Projects (2)
  • High Voltage (14)
  • Hobby Projects (30)
  • Household Circuits (2)
  • IC 555 Circuits (5)
  • Ignition Circuits (2)
  • Indicators (50)
  • Infrared (6)
  • Inverter Circuits (29)
  • Lights and Lamps (97)
  • Medical (8)
  • Meter and Tester Circuits (38)
  • Motor Driver (17)
  • New Circuits (56)
  • Oscillators (30)
  • Pets and Pests (5)
  • Power supply (80)
  • Protection Circuits (25)
  • PWM (9)
  • Remote Control (20)
  • Security and Alarm Circuit (48)
  • Sensors and Detectors (66)
  • Signal Processor (23)
  • Solar Controller Circuits (62)
  • SSR (3)
  • Temperature Controller (20)
  • Timer (25)
  • Transformerless (7)
  • Transmitters (12)
  • Tutorials (45)
  • UPS (2)
  • Voltage Regulators (57)
  • Water Sensor and Controller (29)
  • Home
  • Privacy Policy
  • Contact
  • Disclaimer
  • Copyright

© 2025 · Making Easy Circuits